Extensions 1→N→G→Q→1 with N=C3 and Q=C22.19C24

Direct product G=N×Q with N=C3 and Q=C22.19C24
dρLabelID
C3×C22.19C2448C3xC2^2.19C2^4192,1414

Semidirect products G=N:Q with N=C3 and Q=C22.19C24
extensionφ:Q→Aut NdρLabelID
C31(C22.19C24) = C4210D6φ: C22.19C24/C42⋊C2C2 ⊆ Aut C348C3:1(C2^2.19C2^4)192,1083
C32(C22.19C24) = C4214D6φ: C22.19C24/C4×D4C2 ⊆ Aut C348C3:2(C2^2.19C2^4)192,1106
C33(C22.19C24) = C24.67D6φ: C22.19C24/C22≀C2C2 ⊆ Aut C348C3:3(C2^2.19C2^4)192,1145
C34(C22.19C24) = C4⋊C421D6φ: C22.19C24/C4⋊D4C2 ⊆ Aut C348C3:4(C2^2.19C2^4)192,1165
C35(C22.19C24) = C4⋊C426D6φ: C22.19C24/C22⋊Q8C2 ⊆ Aut C348C3:5(C2^2.19C2^4)192,1186
C36(C22.19C24) = C4⋊C428D6φ: C22.19C24/C22.D4C2 ⊆ Aut C348C3:6(C2^2.19C2^4)192,1215
C37(C22.19C24) = C24.83D6φ: C22.19C24/C23×C4C2 ⊆ Aut C348C3:7(C2^2.19C2^4)192,1350
C38(C22.19C24) = (C2×D4)⋊43D6φ: C22.19C24/C2×C4○D4C2 ⊆ Aut C348C3:8(C2^2.19C2^4)192,1387


׿
×
𝔽